1		Mark	Comment	
(i)	Hor $\quad 21 t=60$ so $\frac{20}{7}$ S (2.8571...) either $0=u-9.8 \times \frac{20}{7}$ or $-u=u-9.8 \times\left(\frac{40}{7}\right)$ or $40=u \times \frac{20}{7}-4.9\left(\frac{20}{7}\right)^{2}$ so $u=28$ so $28 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 M1 E1	Use of horizontal components and $a=0$ or $s=v t-0.5 a t^{2}$ with $v=0$. Any form acceptable. Allow M1 A1 for answer seen WW. [If $s=u t+0.5 a t^{2}$ and $u=0$ used without justification award M1 A0] [If $u=28$ assumed to find time then award SC1] Use of $v=u+a t$ (or $v^{2}=u^{2}+2 a s$) with $v=0$. or Use of $v=u+$ at with $v=-u$ and appropriate t. or Use of $s=u t+0.5 a t^{2}$ with $s=40$ and appropriate t Condone sign errors and, where appropriate, $u \leftrightarrow v$. Accept signs not clear but not errors. Enough working must be given for 28 to be properly shown. [NB $u=28$ may be found first and used to find time]	4
(ii)	$y=28 t-0.5 \times 9.8 t^{2}$	E1	Clear \& convincing use of $g=-9.8$ in $s=u t+0.5 a t^{2}$ or $s=v t-0.5 a t^{2}$ NB: AG	1
(iii)	Start from same height with same (zero) vertical speed at same time, same acceleration Distance apart is $0.75 \times 21 t=15.75 t$	E1 M1 A1	For two of these reasons $0.75 \times 21 t$ seen or $21 t$ and $5.25 t$ both seen with intention to subtract. Need simplification - LHS alone insufficient. CWO.	3
(iv) (A)	```either Time is }\frac{20}{7}\textrm{s}\mathrm{ by symmetry so }15.75\times\frac{20}{7}=45\mathrm{ so }45\textrm{m or Hit ground at same time. By symmetry one travels 60 m so the other travels }15\textrm{m}\mathrm{ in this time (\frac{1}{4}}\mathrm{ speed) so 45 m.```	B1 B1 B1 B1	Symmetr or uvast FT their (iii) with $t=\frac{20}{7}$ [SC1 if 90 m seen]	2
(B)	see next page			

1	continued			
(B)	either Time to fall is $40-10=0.5 \times 9.8 \times t^{2}$ $t=2.47435 \ldots$ need $15.75 \times 2.47435 . .=38.971$.. so 39.0 (3sf) or Need time so $10=28 t-4.9 t^{2}$ $4.9 t^{2}-28 t+10=0$ so $t=\frac{28+\sqrt{28^{2}-4 \times 49 \times 10}}{98}$ so $0.382784 \ldots$ or $5.33150 \ldots$ Time required is $5.33150 \ldots-\frac{20}{7}=$ 2.47435.. need $15.75 \times 2.47435 . .=38.971$.. so 39.0 (3sf)	A1 A1 A1 F1 M1 M1* A1 M1 F1	[SC1 if either and or methods mixed to give $\pm 30=28 t-4.9 t^{2}$ or $\left.\pm 10=4.9 t^{2}\right]$ Considering time from explosion with $u=0$. Condone sign errors. LHS. Allow ± 30 All correct cao FT their (iii) only. Equating $28 t-4.9 t^{2}= \pm 10$ Dep. Attempt to solve quadratic by a method that could give two roots. Larger root correct to at least 2 s . f. Both method marks may be implied from two correct roots alone (to at least 1 s . f.). [SC1 for either root seen WW] FT their (iii) only.	5
(v)	Horiz ($x=$) 21t Elim t between $x=21 t$ and $y=28 t-4.9 t^{2}$ so $y=28\left(\frac{x}{21}\right)-4.9\left(\frac{x}{21}\right)^{2}$ so $y=\frac{4 x}{3}-\frac{01 x^{2}}{9}=\frac{1}{90}\left(120 x-x^{2}\right)$	B1 M1 A1 E1	Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y. Only accept wrong notation if subsequently explicitly given correct value e.g $\frac{x^{2}}{21}$ seen as $\frac{x^{2}}{411}$. Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]	4
		19		

2		mark		sub
(i)	Using $s=u t+0.5 a t^{2}$ with $u=10$ and a $=-10$	E1	Must be clear evidence of derivation of -5 . Accept one calculation and no statement about the other.	1
(ii)	either $s=0$ gives $10 t-5 t^{2}=0$ so $5 t(2-t)=0$ so $t=0$ or 2 . Clearly need $t=2$ or Time to highest point is given by $0=10-$ 10t Time of flight is 2×1 $=2 \mathrm{~s}$ horizontal range is 40 m as $40<70$, hits the ground	B1 M1 A1 M1 M1 A1 B1 E1	Factorising Award 3 marks for $t=2$ seen WWW Dep on $1^{\text {st }} \mathrm{M} 1$. Doubling their t. Properly obtained FT $20 \times$ their t Must be clear. FT their range.	5
(iii)	need $10 t-5 t^{2}=-15$ Solving $t^{2}-2 t-3=0$ so $(t-3)(t+1)=0$ and $t=3$ range is 60 m	M1 M1 A1 M1 A1	[May divide flight into two parts] Equate $s=-15$ or equivalent. Allow use of ± 15. Method leading to solution of a quadratic. Equivalent form will do. Obtaining $t=3$. Allow no reference to the other root. [Award SC3 if $t=3$ seen WWW] Range is $20 \times$ their t (provided $t>0$) cao. CWO.	5
(iv)	Using (ii) \& (iii), since $40+60>70$, paths cross (For $0<t \leq 2$) both have same vertical motion so B is always 15 m above A	E1 E1	Must be convincing. Accept sketches. Do not accept evaluation at one or more points alone. That B is always above A must be clear.	2
(v)	Need x components summing to 70 $20 \times 0.75+20 \times 2.75=15+55=70$ so true Need y components the same $\begin{aligned} & 10 \times 2.75-5 \times 2.75^{2}+15=4.6875 \\ & 10 \times 0.75-5 \times 0.75^{2}=4.6875 \end{aligned}$	M1 E1 M1 B1 E1	May be implied. Or correct derivation of 0.75 s or 2.75 s Attempt to use 0.75 and 2.75 in two vertical height equations (accept same one or wrong one) 0.75 and 2.75 each substituted in the appropriate equn Both values correct. [Using cartesian equation: B1, B1 each equation: M1 solving: A1 correct point of intersection: E1 Verify times]	5
				18

